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ABSTRACT 

To solve  an  Integer linear program,  we Identify 
particular values that the objective function can 
absume on fcv^^u^e lattice points,     inus, we 
reduce the problem of finding an optimal integer 
solution of    n    dimensions to that of finding a 
feasible  Integer solution of    n-1    dimensions.    A 
Branch and Bound Method is presented to solve the 
li\tter problem for the    0-1    case. 
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AN ALGORITHM FOR  INTEGER LINEAR PROGRAMMING 

BY PARAMETRIC MODIFICATION OF AN ADDED CONSTRAINT 

by 

Hajime  Eto 

1.  INTRODUCTION 

We define the standard linear programming problem to be that of finding 

a vector X to 

(1.1) Maximize z - CX 

subject to the constraints 

(1.2) 

(1.3) 

AX < B m 

x > o 

where    A    is    mxn,X    is    nxl,B    is    cxl    and    C    is    1 x n .    The 

Integer linear programming problem is a linear program in which    X   must 

also satisfy 

(1.4) X :  Integral, 

I.e., each component of X must be an integer. We will call a vector X 

satisfying (1.1) and (1.2) a feasible continuous solution, and a feasible X 

tnat also maximizes z - CX an optimal continuous solution. Feasible and 

optimal integer solutions are similarly defined by requiring that (1.3) be 

satisfied. 

Rewriting the problem (1.1), (1.2) and (1.3) in the following manner: 

i 

(2.1) 

(2.2) 

(2.3) 

Maximize        z - CX 

Subject to AX + A^ - B 

X, Y > 0 

Ji.'.|«»lill~-- 

and applying the simplex method to this problem, we obtain a new representation: 

■^ 
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Maximize   2 - C0U + K 

Subject to    A0U + IW - 8° 

U, W > 0 

where U and W consist of the same variables as X and Y but In a 

different order. We call the components of Y the original basic variables 

and the components of W the current basic variables.  (W and Y , or X 

and U may or may not be disjoint.) In an optimal representation, C > 0 

and B > 0 , and an optimal continuous solution is given by U - 0 and 

W - 8° . 

General Ideas of en Algorithm for the Integer Progranming Problem 

Hereafter« we assume an optimal continuous solution has been obtained, 

yielding a value of z - z . 

Let V denote the set of all the variables Including the slack 

variables. Let us denote by G the set of all basic variables. We may 

exclude from G the degenerate variables, i.e., the variables which have 

zero components in B vector in the current tableau. And we Include in G 

the dual degenerate variables, i.e., the variables whose shadow prices are 

zero iu the current tableau. 

Let F denote the set of all the variables with nonzero coefficients 

in the objective function. In many integer programming problems, most of the 

zero-one integer variables have zero coefficients in the objective (see 

Discussion 2 below) and F is a small subset of V .  If a variable has an 

upper bound less than one in a range, it is dropped from F because it 

must take on value zero there. 

Therefore, the intersection FOG is a relatively small subset of V . 

Clearly,  FOG varies with the basis exchange because G does. 
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We can assume without loss of generality that all coefficients of the 

objective are integers and that their greatest common divisor is one. 

However, the greatest common divisor d of all coefficients of variables 

belonging to FOG may be larger than one. 

One of our basic ideas is to it the feasible convex by a hyperplane 

parallel to the objective. 

Experience indicates that an efficient version of Gomory's method of 

integer forms occurs by applying Gomory cuts to the value of the objective 

function first.  (3) (1) (2).  In the Gomory cutting method the value of the 

functional is limited to be integral.  But from a well-known theorem 

(Lemma 1 below) in number theory, the value of the functional is confined to 

be multiples of d as defined above. 

After a candidate for a permissible value of the functional is 

identified, we search for a lattice point at which that value is attained. 

In most integer programs, the upper bounds of unknowns are so low that each 

of them can take only a few values.  Therefore, if we succeed in contracting 

the permissible range of values of the variables belonging to FOG 

sufficiently, it may be practicable simply to enumerate the permissible 

combinations of integer values of these variables. 

The other basic idea is to introduce the dual degenerate variables into 

the basis one at a time in order to determine a more restricted range of 

values of the variables. 

ua^MMMiM ^■BM^MMBBH^^Miajl 
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2.  THEORETICAL FOUNDATION OF THE ALGORITHM 

Definition 1. 

Let F be the set of the variables which may change the value of 

the objective function; i.e., F ■ {x. | c ^ 0 and u. / 1} 

where u. ^ x. . 

Definition 2. 

Let G- be the set of all the variables whose shadow prices are 

zero at an extreme point P whether they may or may not be 

basic in an ordincry sense of the word "basic." If a degeneracy 

occurs at point P , all of the degenerate variables can he 

excluded from Gp ; i.e., 

Gp ■ {x  | c ■ 0 and (the associated b j* 0 if x  is basic)} 

Definition 3. 

Let dp be the greatest common divisor (G.C.D.) of these  c, 

for which x e Fd G ; i.e., 

d - G.C.D. (c  | (c +  0)  and  (c - 0 at a point P)  and  (u i-  1)) 

T 

Lemma 1. 

If c.    and    x^    are integers,   then    \ c.x. ■ k d    where    k    is an 

integer and d  is the G.C.D. of c  .  The proof can be found in (4). 

In what follows, some preparation is made for Theorem 1 associated with 

Figure 1. 

Let Qn be a point inside a convex polyhedron.  Let H be a hyper- 

plane through Qn with the same slope as the objective function and let H 

intersect with the polyhedron at points Q^.Q-, ..., QN .  (Possibly 
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Q. " Q  for 1 f* j  if more than two constraints meet on the same point.) 

Let us consider the smallest subpolyhedron containing Q^iQ.» •••» QN • 

Let V-.V , ..., V. denote extreme points of the subpolyhedron. 

We can consider another parallel hyperplane H that intersects the 

polyhedron on the same edges as H does. Let Q^Qj, .... QN denote the 

intersecting points so that Q. and Q. are on the same edge for each 1 . 

Let us take a point Q0 on H . 

Theorem 1.  (Theorem of a Possible Value of the Oblectlve Function to a 
Feasible Lattice Point) 

If there is any feasible lattice point L in the subpolyhedron 

^.V. ... V , then the value of the objective function at L is k d. , 

where k is an Integer and d.  is the r.C.D. at the , olnt Q.  (see 

Definition 3). 

Proofs 

Let Q. and Q  be on the edge V.VjH »» k) and B. , B.  be the 

basic variables at V  , V.  respectively. Q.  and Q. can be expressed 

uniquely as a linear combination of variables In the union of sets 

(B U B, ) . A similar linear combination which Is unique holds for all 1 . 

Since Q. can be expressed uniquely as a linear combination of 

(Q^.QT» •••! QU- > QQ can be uniquely expressed as a linear combination of 

(Bj^ U B2 U .. • U By) . 

If we cut the polyhedron by a hyperplane H parallel to the objective 

function, then all points on H are optimal feasible (not necessarily 

integer) points having the same value of the objective function. 

Let us consider an extreme point of the cutting polyhedron on H , say 

Q  which is assumed to be on the edge V.V. .  By repeating the process of 

/ 

/ 
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The Slope of the 
Objective Function 
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appropriate basis exchange, we get all such Q«,Q^, ...« QN which have the 

same value of the objective function. This fact implies that the variable 

Introduced Into the basis at each time has zero shadow price; in other words. 

starting at Q1  all the variables Introduced into the basis belong to the 

se. G, - (b1 U B_) .  Furthermore, no other variables belong to this set, 

because otherwise H would have other extreme points having different values 

of the objective.  Hence G ■ (B U B ) + S  where S.  is the set of all 

the variables whose shadow prices are zero at Q. .  The same argument holds 

for H and Q.  and leads us to the conclusion that G. - (B. U B.) + S. ■ 

(B1 U B2) + S1 - G1 . 

Similar results can be btalned for Q.  and Q  for all 1 ; e.g., 

suppose G2 - (B U B,) 
+ S2 ^ S " ^3 U ^4^ + ^2 where ^2 i8 0n ed8e 

V^V, .  (B_ U B,) , the basis on Q- , is obtained from (B. U B») uniquely 

by introducing a variable from the set S,  into the basis and deleting a 

variable from the set  (B. U B?) whose shadow price turns zero; in other 

words, a variable moves from S.  to (B_ U B.) and another variable moves 

from (B. U B?)  to S« while the others remain unchanged. Thus G. • G« . 

Furthermore, we see tnat G, = G - G. ■ 1-     since  G.. » G , and G_ ■ G„ . 

The same argument leads us to the conclusion that G- ■ G„ ■ ... ■ 

GM • G, • G„ ■ ... ■ G., .  Since Qn and Qft are expressed uniquely as 
N    1    Z N U        U 

linear combinations of Q, , ..., Q., and Q, , ..., 5., , respectively,  G- 
i        N        i        NU 

and G» are the same. 

Clearly, since tht variable of the set F can change the value of the 

objective function, we can drop the variable which do not belong to set F 

from consideration.  Thus, the theornm is proved with help of Lemma 1. 

Q.E.D. 

" i'inmifiium^,^. 
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Corollary to Theorem 1.  (Criterion of an Nonexistence of a Lattice Point) 

If b. £ 0 (mod. d  ) for some 1 , then no lattice point can exist 

in the subpolyhedron specified by G where d   - G.C.D. 

(a  | x. e Fin G) and Fi - {x \  a      + 0    and u / 1} in (2.2). 

Proof; 

r (i) From Theorem 1,     I        a. .x»kd    for k integer, while 
jlxjEPnG ^ j 

/ *jiX. ■    y   Sj.x. ■ b.  in the subpolyhedron specified by G . Hence 
i   iJ J jlxjeFnc « J  i 

b - k d^1^ for k integer, thus b = 0 (mod. d(i)) for all i If any 

lattice point exists in the subpolyhedron. 

Q.E.D. 

Theorem 2.  (Theorem of Enumerablllty) 

If there is any lattice point in the subpolyhedron, then it is 

necessarily on a hyperplane H (or one of the hyperplanes if there is more 

than one such H in the same subpolyhedron) whose value of the objective 

function is k d (for an integer k ). 

Proof!  (See Figure 2.) 

Let us assume on the contrary that a lattice point L is on a 

different and parallel hyperplane H whose objective function value is not 

k d for any integer k .  Here we assume without loss of generality that an 

intersecting point M of H with an edge is on the same edge as (L . M 

is not necessarily a lattice point. 

Since H has the same slope as the objective function, every point on 

]{    has the same value of the objective function. Thus the value of the 

objective function on M rnd  the value of the objective function on L are 

equal to an integer value v .  The basis which expresses Q.  also 
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■xpresses    M  .     Thus we  can see 

(G1    at    Q1)  -   (GM    at    M)   . 

This implies v is equal to k d . Hence M is on one of the hyperplanes 

H having k d as the value of the objective function, and so is L .  This 

co.itradicts the assumption. 

Q.E.D. 

r 

Theorem 3.  (Theorem of the Criteria for Entering Another Subpolyhedron and 
Ending the Algorithm Unsuccessfully) 

If Q  is an infeasible point before a basis exchange and the 

algorithm moves to a feasible point Q '  after an appropriate basis 

exchange, then H given by the added constraint is In another subpolyhedron. 

If feasibility can no longer be recovered by any basis exchange, then the 

added constraint is out of the feasible domain. 

Proof follows from Figure 3.  H is out of a subpolyhedron and H is 

out of the feasible domain. Theorem 3 justifies Step 3 and Step 9. 

mmmmaammm^mmmmm 
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FIGURE 2:     A LATTICE POINT ON A CUTTING HYPERPLANE 
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FIGURE  3:      ENTRANCE  INTO ANOTHER   SUBPOLYHEDRON 

AND UNSUCCESSFUL  TERMINATION 
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3.  DESCRIPTION OF THE ALGORITHM 

Step 1. 

Solve the standard Linear Programming Problem without Integer 

requirement (1.4) and obtain z , the optimal value of the 

objective. 

Let FQ stand for the optimal extreme point of the continuous 

problem. 

Examine whether the solution is integral or not. 

If integral, the problem is solved. 

If otherwise, go to Step 2. 

Step 2. 

Define d(i) - G.C.D.  (a   | x e F H G)  for all i f 

given G where F. ■ {x. | a., i* 0 and u /I} . 

Examine whether b. = 0  (mod. d  )  for all i or not. 

If not, then go to Step 9. 

Otherwise, go to Step 3. 

or a 

Step 3. 

Add to (1.1), (1.2), (1.3) and (1.4) the following constraint 

r : 
o 

C X < k d ■ o o 

where    d      Is  the greatest  common divisor of all  the variables o * 

belonging to    FOG 

. 
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Step A. 

Examine whether or not the solution subject to the augmented 

constraints In Step 3 Is feasible without exchanging the basis. 

If feasible, go to Step 5. 

If otherwise, go to Step 9. 

13 

Step 5. 

Obtain the Intersecting points Q5  »Q» i •••. Q«   of the 

added constraint r  with the edge of the convex hull by 

repeating the basis exchange.  (One of the points, say 

Q(0) - (x^.x^ , .... xJJ), .... xj^) , Is already obtained 

In Step 3.)  In more detail, exchange an appropriate basic 

variable with one of the dual degenerate variables (I.e., a 

variable whose shadow price Is zero In the current tableau) 

and get another intersecting point with the same value of the 

objective. 

The number of dual degenerate variables la equal to n-1  (or 

less than n-1 if more than two constraints meet at the same 

point), where n is the number of the components of X 

excluding the slack variables. 

If an infeasibllity occurs during a basis exchange (i.e., if 

one of 0;  ,0; \ ..., QA '  is out of the feasible domain), 
i    z N 

go to Step 9. 

If max xp^ < 1 , then define F , F , d and d(i) .  If 
J (D b ^ 0 (mod. new d  )  for any  1 or the current value of 

objective Is not k'd for new d and any Integer k* , then 

go to Step 8 after resetting old F , F , d and d    again. 

Otherwise, go to Step 6. 

. 



0 

14 

' 

Step 6. 

Obtain a lattice point (or lattice points) that can be expressed 

as a - --fx combination of the points Q.  .Q-  , .... Q^ ' . 

Tlu     i. s that the x  belonging to FOG must satisfy 

/ (1)  (2)       (N)\       ,  / (1)  (2)      ( 
max Ix.  ,x,  , ..., x. ) * XJ > min lx.  ,x.  , ..., x, 

*<"") for .11 i c PO G «here q<0) - (x<J).«<j>  

mfn-1/ 

(2) 

Step 7. 

Examine whether a lattice point Is obtained or not. 

If obtained, the algorithm comes to an end. 

If otherwise, go to Step 8. 

Step 8. 

Change the added constraint r  parametrlcally to r ' 

C X < (k - l)d 
-  o     o 

where C , X are the same as in Step 3 above.  Solve the problem 

subject to the modified constraints.  Go to Step A. 

Step 9.  (From Step 4) 

Identify the next FOG 

Go to Step 2. 

The procedure below is similar to the above case if we substitute 

subscript 1 for subscript 0 and if we replace "add a constraint r 

C X < k d " with "modify the added constraint r  into r,  such that 
= oo o       1 

r. : C X < k.d. ." If no extreme point can be found anymore, then the 

algorithm terminates unsuccessfully. 

• i 
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Remark to Step 2 and Step 3 

A question arises how to know In advance which variables belong to 

F H G after the addition of a constraint r .  They do not remain the same 
o      ' 

as on Pn . 

In order to Identify the variables belonging to the current set of 

FOG, add for trial a constraint 

C X < z ' 
■ o 

where    z   '   -  fz ]    If    z       Is not an  inteeer, or    z   '  ■ z    - 1    If    z      Is an o o o ft    ' o o o 

Integer.     In other words,     z   '     Is  the maximal Integer less  than    z 

We are In position to Identify the variables In question by solving the 

problem under the added trial constraint.    Ti.e trial constraint may happily 

coincide with the true constraint     r     .    This procedure Is Justified by 

Theorem 1  If the hyperplane given by    z  '    and that given by    k d      are in 

the same polyhedron. 

Remark to Step 9 

A more detailed procedure to  identify a new    FOG    after 

C X <   (k -  l)d      becomes infeasible  is as follows: =      o o 

If    d    > 2  ,  then modify the added constraint    C X < k d    - 1    for trial o ■ "    o o 

and examine whether it is feasible without a basis exchange. 

If  it  is  feasible,  then repeat  the same procedure by  reducing the right- 

ham, side of the added constraint by    1    until it  becomes  infeasible.     If  it 

Is  infeasible,   then a new    G H F    can be identified  in the  same manner as in 

Remark to  Step 2 and Step  3 after basis exchanges.     The trial constraint may 

happily coincide with the  true constraint    r1   . 

Thus  if the next subpolyhedron is small, we may "skip"   It without 

jumping over any lattice points  (Figure 4).    This occurs because a sub- 

polyhedron cannot contain a lattice point  (from Theorem 1)   if  it does not 
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have any hyperplane which has an Integer value of the objective.     In 

Figure 4,  a subpolyhedron   V.V.V.V,.     Is skipped and a subpolyhedron 

VoV.V.V,    Is examined. 
J  J  o   / 
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FIGURE 4:     A SKIP OF A SUBPOLYHEDRON 
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4.     FINIThNESS  PROOF 

V 

Let each hyperplane be specified  by Indices    K  ,   1    where    K    denotes 

each subpolyhedron and    1    denotes each hyperplane in the same  subpolyhedron. 

(i ■ 0    for    K    such  that  the    K        polyhedron does not contain a hyperplane 

given by a multiple of    dk  .) 

Theorem 4.     (Theorem of Finlteness) 

The algorithm terminates in a  finite number of steps. 

Proof; 

The number of i (i.e., the number of times the constraint is modified) 

for each K Is clearly finite since d > 1 , and K is also finite 

because the number of the extreme points is finite unless the linear problem 

itself is unbounded.  For each 1 , K , the number of basis exchanges is 

finite because a hyperplane is n-1 dimensional. After identifying the 

range of the values which each variable may assume, the enumeration of all 

permissible combinations of the integral values is finite. 

— ■— 
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5.  A GRAPHIC EXPLANATION (FIGURE 5.) 

Step 1. 

We obtain P„ , the optimal point with z - z  .  Examine whether 
0 o 

P0 is a lattice point or not.  It Is not a lattice point In this 

case, so we pass to Step 2. / 

Step 2. 

Suppose  b = 0  (mod.  d  )  for all  1 

Step 3. 

Cut the convex by line (1) 

C X < k d 
» o o 

where d  Is the greatest common divisor of all the variables 

belonging to FOG, and k  Is the maximal Integer such that 

k • d < z 
o   o - o 

Suppose we obtain an optimal point Q 
(0) 

Step 4. 

In this case. It Is feasible.  So pass to Step 5. 

Step 5. 

By exchanging the basis, we obtain the other optimal extreme 

point    Q^0)   . 

Step 6. 

We search for a lattice point on the segment Q1  Q^   with- 

out success. 

Step 7. 

We pass to Step 8 because we have failed In obtaining a lattice 
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point. 

Step 8. 

Replace line (1) by line (2) 

C X < (k - l)d 
-   o     o 

Solve  the modified  problem subject  to  (2)  without   the  basis 

exchange. 

Step 4. 

It  becomes infeasible without  the  basis exchange because we 

obtain as a solution the intersecting point of line   ('<.)  with 

line  (5). 

Step 9. 

We identify a new FOG below P  by replacing line (2) 

by line (3): C X < k d - 3  to obtain a new G after 
= o o 

C X < k d  - 1 and C X < k d  - 2 are found to be still ■■ o o *     o o 

feasible. 

Step 2. 

,(1) Suppose  b  = 0  (mod.  d   )  for all  i again. 

Step 3. 

Modify  r  into  r,  such that 

C X < k1d1 

where d.  is the greatest common divisor of all the variables 

elonging to the current set of  F D G , and  k..  is the 

• 
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FIGURE 5:     CUTTING THE CONVEX 
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maximal Integer such that C X < k.d.  Is In the subpolyhedron 

P0P1P2P3 ' We obtain Qi   as a solution to the modified 

constraint. 

Step 4. 

It remains feasible without exchanging the basis. 

Step 5. 

We  obtain the  other  Intersecting point    Q^ besides    Q 

which was obtained In Step  3. 

Step 6. 

We search for a lattice point on the segment Q.  Q^ 

Step 7. 

A lattice point Is not obtained. 

Step 8. 

We change the added constraint r1  to r1 '  (line (4)) 

C X < (^ - l)d1 , 

(2) 
and we obtain Q '  as a solution without exchanging the basis. 

Step 4. 

The solution remains feasible. 

Step 5. 

(2) We  obtain the other  Intersecting point     Q^ by  Introducing the 

dual  degenerate  variable   into  the basis 
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Step 6. 

(2)   (2) We search  for a lattice point on  the segment    Q.     Qo 

Step 7. 

We succeeded  in obtaining a lattice point on the segmrnt, 

successfully terminating  the algorithm. 
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6.     NUMERICAL EXAMPLE 

Maximize    z = 7x    + Ux- + lOx. 

9x1 +    5x2 + 3x3 <   34 

4X,  +    5x0 + 6x- <   17 
1             2 3 ■■ 

4X.  + 10x2 + 7x <   30 

Step 1. 

We obtain as  the  optimal  feasible  solution 

x.   -  1.0   , x-  ■ 2.6   , x_   =  0. 

and 

z - 43.4 

The solution above Is not integral. 

Step 2. 

Add a constraint for trial 

7x. + 14x_ + lOx. < 43 
1     2     3 - 

partly to identify the variables belonging to  FOG. 

Step 4. 

The solution  is   feasible. 

Step 9 and Step 2. 

After the basis exchange, we are in position to identify 

x. , x. and all three slacks as the variables belonging 

to G n F . 
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. 

d(1) - G.C.D. (9,5,1) - 1 , 

34 = 0 (mod.  1) 

,(3) 

d(2) - G.C.D. (4,5,1) 

21 = 0  (mod.  1) 

dw - G.C.D. (4,10,1) - 1 

30 H 0  (mod.  1) 

" 1 , 

Thus, a lattice point can exist because the slacks in G make 

d^ - 1 for all i in this case. 

Step 3. 

The  greatest common divisor of  the coefficients of    x.     and    x- 

is    7     and the maximal multiple of    7    not exceeding    43    is 

42  .     So we add a constraint 

7x1 + 14x2 + 10x3 < 42  , 

and we obtain a solution 

'l  3 ' X2 ' 3 

25 

and 

Step 4. 

x. - 0. 

The solution above is feasible. 

Step 5. 

By  introducing one of  the dual degenerate variabler  into the 

basis,  we obtain 

■ 
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x    - 0  , x2  "  3 

and 

x3 - 0 

We successfully obtained an optimal  integer solution. 

- 
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7.  A METHOD FOR FINDING LATTICE POINTS 

A problem of searching for lattice points in Step 6 is left unsolved. 

One method is to repeat the same procedure, i.e., to reduce the problem 

again to a simpler problem to find a feasible solution in n-2 dimensions. 

At this time d_l is uniformly used for a dummy objective function 

z m  I x       in all subpolyhedrons; we do not have :o identify  G 0 F anymore 
j * 

because the value of the objective is already fixed. 

Another method is to use a branch and bound algorithm which will be 

presented below.  Emphasis is placed on a  0-1 problem. 

As stated in Theorem 2, all extreme points Q,,*}-. • • • . QN of a hyper- 

plane H can be obtained by repeating the introduction of variables into 

the basis whose shadow prices are zero.  Let  (x,  ,x„  , ..., x   , .... 

j denote the coordinate of Q  (j - 1, ..., N) . 

If there is any lattice point on H whose coordinate is 

x(J> 

(x1,x0, .... x,, ..., x . )  where  x.  should be an integer for all  i , i  /       i       nrrn 1 

then 

I    '  min (x^) < xi < max (xj^) " u       V  i 

If  [Ä.] ^ [u ] < I  , then there cannot be any integer  x   between u 

and I.   . 

Rule 1.  (Criterion of Absence of a Lattice Point) 

If  [u,] < I.    hold for some  i , then H in disregarded. 

Rule 2.  (Criterion of Zero Valur of a Variable) 

If  u  < 1 , then x - 0 . 

Hereafter, we consider only  0-1  case. 
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Rule 3.  (Criterion of Value One of a Variable) 

If £. > 0 , then x. = 1 .  Rules 2 and 3 fix some variables 

on H . 

On a particular hyperplane H , the value of the objective function is 

already fixed.  Hence, we no longer care about optimizing it.  The order in 

which the variables are assigned values is unimportant, contrary to the 

ordinary branch and bound algorithm in which we have to take into account 

the variables in a predetermined order.  In our case, the only criterion that 

must be satisfied is   ^  cixi = k d .  Hence we will take the assignment 
JePDG j J 

of the variable's value in the simplest order, namely in the ascending order 

of the indices of the variables. 

Hereafter, we assume c  > 0 for all j .  (If not, we can obtain it 

by resetting x = l~x4 •)  ^or t^e sake of simplicity let us assume the 

first  f variables are already fixed. 

An Algorithm of Enumerations by Branch Method 

n 
(1)   If  I    ex. = k d for n' < n , then we obtain an Integer 

j-l J J 
solution by assigning value zero to all other unfixed 

variables. 

(1-1)  If the solution is feasible, we have obtained an Integer 

feasible solution. 

(1-2)  If the solution is not feasible, then disregard this branch 

and search another branch. 

(2) 

(3) 

If  y c.x. < k d  for n' - n , then go back to the branch 

j-l TJ 
and search another branch for a larger value of  £ c\x*   • 

n' i    ^ 
If  i    ex  > k d for n' < n , then go back to the branch 

j-l J ^ 
and search another branch for a smaller value of  / ex  . 

i * * 

 u 
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A Numerical  Example of  EnuMdatims 

Let the objective function be    9x,   + 16x_ + Ax_ + 12x,   .     Let us assume 
12    3     4 

x.  never appears as a basic variable ac this stage. Hence d - G.C.D. 

(16,4,12) - 4 .  Suppose k»5 is appropriate at this stage, therefore 

z - 5 x 4 - 20 .  Let (^ - (0,0.25,1,1) , Q2 = (0,0.875,0,0.5) , 

Q3 " (0,1,1,0) - Q4 .  Thus,  0 £ x1 ^ 0 , 0.25 lx^l,0<^x<^l, 

0 1 x4 1 ! '  By Rule 2» x - 0 and by Rule 3 x = 1 .  The only unfixed 

variables are x» and x, .  In Figure 7, a figure on the left side of a 

slash denotes a value taken on by a variable in the right column and a 

figure on the right side of the slash denotes a value of the objective 

function taken on a solution associated with an arc. 

We start with Arc 1 to which a value 16 is associated as the objective 

function.  16 Is smaller than 20, therefore we proceed until we reach or 

exceed 20. We consider Arc 2 where we reach an end of a branch, but its 

value 16 is too small, so we search another branch for a bigger value. 

(Procedure 2.)  We consider Arc 3 but its value 28 is too large, therefore 

we go back.  (Procedure 3.)  We consider Arc 4 where its value is exactly 

20.  Thus, we assign x,  a zero value.  Hence, automatically we move to 

Arc 5 by disregarding Arc 6.  (Proceoare 1.)  We examine whether Arc 5 is 

feasible or not.  Arc 5 happens to coincide with Q. , therefore it is 

feasible.  (Procedure 1-2.) 

Another Numerical Example 

Let us consider the same objective function and a different k=6 . 

Hence, the criterion is 9x    + 16x? + 4x- + 12x. = 24 .  Let 

(^ - (0,1,0,2/3) . Q2 = (0,1,1,1/3)  and Q3 = (0,1,1/2,5/12) = Q^ . 

u, = 2/3 [u,] = 0 < H. = 1/3 .  Hence, there cannot be any integer feasible 

solution.  Thus, we must disregard this hyperplane.  (Rule 1.) 
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The algorithm presented above is a branching algorithm; but it is a 

boundr.ng algorithm in a somewhat different sense than usually conveyed by the 

term "branch and bound." For each  H a value of the objective function is 

already fixed, so we do not need to evaluate it anymore.  Instead, we give 

an upper and a lower bound to each variable. 

A criterion t nction given here is the criterion to see whether an arc 

is feasible or not, as opposed to the ordinary branch and bound algorithm 

where the criterion is:  which variable should be considered next. 

No evaluation after setting a hyperplane H  is made in the algorithm 

presented above. 
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8.  DISCUSSIONS 

Another Starting Procedure 

We have started with an optimal continuous solution.  But we can also 

start with a feasible integer solution if it is already given.  In the latter 

case, we always have a feasible integer solution and we proceed to a better 

integer solution until an optimal continuous solution is reached or exceeded. 

The termination criterion Is the same as in the former case. 

The Possible Application of the Algorithm 

Let us assume that the matrix A  (in A X * B)  is m x (n+tn)  (with 

m slack variables).  Without degeneracy, m basic variables are associated 

at each 0  , and one extreme point is already identified on H .  Hence, 

(n-1)  nonbasic variables assume zero shadow prices at Q. .  Thus, 

(m + (n-1))  variables belong to G.  at V .  This leaves out one variable. 

In particular if a slack variable is this exception, then F 0 G. - F .  But 

consider the problem of m constraints D,(x,, .... x ) > 0  (1 « 1, ..., m) , 11 n    E 

of which at  least    m'     constraints  are  required   to  be  satisfied with integral 

x       for all    j   .     The  problem is  represented as   follows: 

D    -  i X     >  0 
i 11 - 

(i - 1,   ...,  m) 

m - m 

xi - {0,  1} 

where I    <  D  for each 1 .  In this problem in addition to (m+n) 

variables, there are m X-variables whose coefficients are all zero In the 

objective function.  The cardinal number of G - nrt-n - 1 > the cardinal 

number of F 0 Gj 

> max (0, n-m - 1) 

_______ MM 
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while the total number of the variables equal 2 m + n .  Thus we can see If 

n i -. not too large for m , the set F 0 G  is a relatively small subset 

of the set of all the variables. 

When G consists mostly of slack variables and  ^.i'8 >  d n^Y be greater 

than one.  Thus, a cutting hyperplane method may work efficiently.  On the 

other hand, many d   s are equal to one because coefficients of slack 

variables are one in constraints. 

When G consists mainly of nonslack variables, then the d  's may 

be greater than one and Si.ep 2 may work efficiently in excluding from 

conslieration subpolyhedrons which cannot contain a lattice point.  On the 

other hand, the cutting hyperp^ane method may not work so well in this case 

because  d may be close to one. 

MH^M» 
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